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Discontinuities in Planar Chirowaveguides

Xinzhang Wu,Student Member, IEEEand Dwight L. Jaggardirellow, IEEE

Abstract—In this paper, we propose, develop, and implement normalization often used in quantum mechanics. The back-
an exact method to analyze the effect of discontinuities in open ward (or forward) radiation power of the open disconti-
planar chirowaveguides. The method combines the building- nuity structure can be obtained by the summation of the
block approach of multimode network theory with a rigorous . .

powers of the reflected (or transmitted) higher propagat-

mode-matching procedure. Both the scattering of discrete spectra !
surface-wave modes and the continuous spectra radiation and ing nonsurface-wave modes. Note that the presence of these

evanescent modes are discussed in this paper. The introductionbounding planes does not affect the essential physics of the
of equivalent transmission-line networks brings new physical scattering process.

insight into the overall behavior of the discontinuities. Features In this paper, the scattering characteristics of the discon-

such as symmetrical properties of the structure are also investi- tinuities i | hi id . tioated b
gated. Based on the analysis, numerical results are displayed to /"NUI€S 1N OPE€N planar chirowaveguides aré investigated by

demonstrate the usefulness of this approach and to discuss mode@ method which combines the building-block approach of
conversion and radiation characteristics of discontinuities. multimode network theory with a rigorous mode-matching

Index Terms—Chiral material, chriowaveguide, discontinuity, procedure. Introducing equivalent transmission lines both in
mode-matching method. the transverse section and in the longitudinal direction not

only simplifies the mathematical manipulations but also brings

new physical insight into the overall behavior of the wave-
I. INTRODUCTION propagation phenomena. In the analysis of the eigenvalue
SBraoblem of the homogeneous planar chirowaveguide, a trans-

URING the past decade, attention has been focu . S L
. o . ._verse equivalent transmission-line network is introduced [10],
on electromagnetic chirality [1]-[3], and its potential , = "~ . . ;
. . - ; which indicates that the right circularly polarized (RCP) wave
application to microwave, millimeter-wave, and optical-wave ; .
; , : .—and the left circularly polarized (LCP) wave can propagate
guided structures. The concept of chirowaveguide was |ntricr)]—de endentlv in the uniform reaions and couple onlv at the
duced in [4], [5], and the characteristics of a uniform planar P Y 9 P y

chirowaveguide have been extensively investigated [6]—[1(§j§erface' Although the eigenvalue problem can be treated

; . ; | the vector transmission line network [6], the physical
As a further step toward the design of versatile devices an . " X
o ) . . LT : icture of the network used here provides additional clarity.
circuits, the analysis of various discontinuities in chirowave-

guides becomes significant. Mariotte and Engheta analyzed ﬂeth.e Iong|tud|nall analysis, .th? electromagqet|c field prob
. o . . em is transferred into the building-block multimode network
reflection and transmission of guided electromagnetic waves . : e o
. S ) . roblem, from which the discontinuity structure is viewed as

at an air—chiral interface and at a chiral slab in a parallel-

plate waveguide. They provided a means to measure tchoensstmg of uniform waveguides, or building blocks, and

L . . . unctions. The fields are represented by the complete set of
chirality admittance in closed waveguides [11]. Here, the open ; ; . .

. ; ; oo - Waveguide modes corresponding to independent multimode

waveguide case is considered and periodic structures with la

e . . :
.S : . i ) Lr%msmlssmn lines for each uniform waveguide and are then
variations are examined. This provides an extension to the

small perturbation case examined earlier [12]-[14]. required to satisfy the boundary conditions at each junction.

. . o Mode matching is then employed so that the coupling of the
Since the planar chirowaveguide is an open structure, ,In o . : )
. transmission lines between the two sides of the junction can be
addition to the surface-wave modes, the nonsurface-way .
) : . calculated. Finally, all parts of the problem are put together

modes comprise a continuous spectrum. In this analys]s,

the customary procedure of discretizing the continuous s 10’ obtain the scattering properties of the entire structure. In
y P 9 P&fis analysis, the symmetrical properties of the discontinuity

it;umwglllss I fgfs;blosvéogc;l\gegeﬁ) )\/Nptlr?:n?ar?aerrfiﬁti%;;\?gu&gstructure, both in the cross section and in the longitudinal
9 . : P ) €9 glrection, are discussed in detail so that the analysis can be
thus replacing the open region with a chiral media par-

tially filled parallel-plate waveguide, which supports, in aﬁin;?tlgireg)'( laining the concent and developing a mathemat-
dition to the surface waves, an infinite number of higher P 9 P bing

. ical formulation, numerical results of reflection, transmis-

nonsurface-wave modes—some propagating, and the remain- L . '

der, nonpropagating. This procedure is similar to the boS>|<0n’ _and radiation effects are carefully investigated. The
’ ’ coupling effect between thé&l; mode (i.e., the Tk mode

for nonchirowaveguide) and thé, mode (i.e., the TM
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X where
_|wrypee  —jwp
X2 K= [ Jwe. Wk uec} (72)
Perfect Conductor and
1 j
Kl=— — |YRVHCe JWR 1 (7p)
w? pe(r? —1) | —Jwee  wh\/E.
To separate variables, let
E, =e,(x)U(2) (8a)
H, =h,(2)U(z) (8b)
By =cy(x)J(z) (8¢)
Hy =hy(2)J() (84)
Perfect Conductor E. =c.(x)J(2) (8e)
Fig. 1. Configuration of a uniform planar chirowaveguide. Here, in order to H.= hz(a:)U(z) (8f)
discretize the continuous spectrum, perfect conducting walls are introduced . . .
far above and below the cﬁiral slab.p ’ and substitute into (3)_(6)' We find
dU(z
ﬁ = —jk.Z.J(2)
Il. EQUIVALENT TRANSMISSION-LINE REPRESENTATION dz (9)
OF HOMOGENEOUSPLANAR CHIROWAVEGUIDE dJ(z) = —jk.Y.U(2)
A homogeneous planar chirowaveguide of the type shown dz
in Fig. 1 is considered. In order to analyze the discontin@®"
ity problem in the following section, both the surface-wave ez — kK1 Cy (10)
modes with discretized modal spectra and the radiation and hy i hy
evanescent modes with continuous modal spectra are consid- d [e. e e
. . .. . . (7 )==-K[Y )+ 22 "l (11)
ered. For mathematical simplicity the continuous spectrum is de \h. ’ % ’
discretized. Here, perfectly conducting walls are introduced far d (e c
above and below the chiral slab, and the guided wave structure 7 <hy ) =K <hz ) (12)
Y z

becomes a planar waveguide partially filled with chiral media.
For chiral media, the constitutive relations for timewhereZ. is the characteristic impedance which is normalized

harmonic fields ¢/“*) may be written as [1]-[3] as
D =¢E - j¢.B (12) Zo=1 =10 (13)
B . ¢
H T —J&E (1b) in this model. Equation (9) is the equivalent transmission

line equation in thez-direction. Here,U(z) and J(z) are
the voltage and current amplitudes of the eigenmode in the
glanar chirowaveguide, anid is the longitudinal propagation
constant of the eigenmode.

The matrixK and its inverse matrifgk ! in (10) and (11)

where¢. is the chirality admittance;, is the permittivity, and
i is the permeability.

Substituting the above constitutive relations into Maxwell’
curl equations, we obtain

V x E=—jwpH 4wk /e E (2a) can be transformed into a diagonal matrix by means of a
V x H = jwe.E+wry/ue.H (2b) transformation matrixI* as follows:
where e, = ¢ + p€2, and s is a dimensionless and nor- T KT = k(;’ _2 (14a)

malized quantity called the chirality parameter, defined asd

Kk = &/ 1t/€c. an 1 -

In this analysis, we assume that the fields are invariant along T 0
the y-direction, i.e.,0/9y = 0. From (2), we get TK!T=|"* 1 (14b)
o (E L (E 0
T)l=-K Y 3 -
0z <H’”> 022 <Hy> © where
Jd (E, L,
7 <Hy> = _K<Hx> 4) ki =wy/pec(1 £ k) (15)
. [e
d (E, E, 1 @ (E, 1 1 1 —j, /=
- ——— — 1
3<Ey)—K<EZ> (6) vEVH by
Oz \Hy H, (16)
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Fig. 3. (a) Configuration of a chirowaveguide grating. (b) Bisection due to
symmetry. (c)ith basic unit of (b).

Fig. 2. Transmission-line network representation of Fig. 1.

If we let
ey(x) _T Vi(x) (172) that the short-circuit (open-circuit) does not indicate that the
hy(z)| — 7 | Va(z) plane atz = 0 is a physical electric wall (magnetic wall) or
and E,=0andE. =0 (H, = 0 and H. = 0), but indicates
e-(z) I(z) the equivalent transmission line is short-circuit (open-circuit)
[hz(a:)} = {_72(33)} (70) or E,=0andH, =0 (£, =0 andH_ = 0). The purpose

. o _ of dividing the modes into the even type and odd type is that
the uncoupled radial transmission lines for the RCP wayethe discontinuity structure to be studied is symmetrical to

(i = 1) and LCP wave{(= 2) can be obtained as the z = 0 plane, for the even-modes’ (odd-modes’) excitation
dvi(x) . case only the even modes (odd modes) can be generated so
dr —JkziZoili(x) that only one type of modes is considered; thus simplifying
dI;(x) (18)  the analysis procedure. The eigenvalues and eigenfunctions of
e —jkiY0: Vi) a planar chiral waveguide can be obtained using the transverse
resonance method and transmission-line theory, which is not
where discussed here because of space limitation.
1 Jk-l- 2 2 2
Joi=— = , ki, =kt — k2 (19)
T Yok o lll. SCATTERING CHARACTERISTICS OF
1 —jk_
Ty = == Ij 7 K2, = k2 — k2. (20) DISCONTINUITIES IN THE LONGITUDINAL DIRECTION
02 z2

As an example of the discontinuities in planar chirowave-
The equivalent transmission-line network in the cross seguides, Fig. 3(a) shows a geometrical configuration of the chi-
tion is depicted in Fig. 2. In that figure, the RCP wave anewaveguide grating under consideration. Because the struc-
the LCP wave can propagate independently in the uniforimre is symmetrical in the longitudinal direction, the scattering
regions and couple only at the interface [10]. The introductiaf the guided mode may be analyzed in terms of the sym-
of the transmission line brings a clear physical picture of wawveetrical and antisymmetrical excitations for which we have
propagation in the planar chirowaveguides. Since the structtine equivalent transmission-line open-circuit and short-circuit
under consideration is symmetrical to the= 0 plane, the bisections in the longitudinal transmission lines, respectively,
eigenmodes of planar chirowaveguide can be divided into tvas indicated in Fig. 3(b). It should also be noted that the short-
types. The first type, which is defined as the even modes (i.@rcuit (open-circuit) does not indicate that the plane at 0
Rs,, modes and.,,,, modes), corresponds to the open-circuis a physical electric wall (magnetic wall) df,, = 0 and
in the transmission line a& = 0, while the second type £, = 0 (H, = 0 and H, = 0), but indicates the equivalent
defined as the odd modes (i.€,,_1 modes andL»,,_1 transmission line is short-circuit (open-circuit) ., = 0 and
modes) corresponds to the short-circuit in the transmissi¢f), = 0 (£, = 0 and H, = 0). Here, we consider only
line atz = 0. The nomenclature afi?,, modes and.,, modes the even-mode excitation case so that the plane of 0
was chosen because it can be shown that when chiralitycmresponds to equivalent transmission-line open-circuit.
presentR,, modes carry most of its energy in the RCP guided- The scattering properties of each bisection can be investi-
wave component and,, modes carry most of its energy ingated through the reflection characteristics of each basic unit.
the LCP guided-wave component [9]. Here, it should be noté&dg. 3(c) depicts théth basic unit which consists of thith step
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discontinuity between two uniform guides at a poine »; for m,n = 1,2, 3,---. On the other hand, multiplying

and a uniform guide of length between points; andz;_;. (24) and (25) by Bym, €ym] and [rzm, €xm], respectively,

The analysis procedure for the reflection characteristics of thed making use of the orthogonality relation (23) of the

basic unit is outlined below. chirowaveguide on the RHS of the discontinuity, we find
Since the terminal plane of the stepped structure-at0 for T — T —

the longitudinal equivalent transmission lines is either open- N;U=U, M;J=1J. (27)

circuit or short-circuit in the equivalent transmission lin€pne can show that the following matrix identities hold for the

the input impedance matriZ(z;") at the z = z; plane present case:

looking to the right can be determined by the impedance

transform technique. Therefor&(z;") can be considered as M{N; =N/M, = 1 (28)

a known matrix. General field solution in each constituent . . .

uniform region may be expressed in terms of the superpositi\ﬁ’rl?ere1 Is the unit matrix _andF denotes '_[he transpose. .

of a complete set of mode functions. For tangential field From (26) and (27), it can be derived that the input

components in the < z; region, we have |mpedan_cg matriZ(z; ) at thez = z;~ plane looking to the
right satisfies

J=3 [t
Bl

[Hy(a:, Z =
A similar set of tangential field components may also behe reflection-coefficient matrif'(z;") at thez = z;~ plane
written for the = > =z} region, but it is not cited here for looking to the right is obtained as

simplicity. It can be demonstrated that the orthogonal relation

T, 2

|:Ea:( )
H,(z, z)
Ey(

)

N W

Joe e 2(57) = MiZ(zHME (29)

where

} I(2). (22) U=2(:-), U= 23, (30)

=Y — [Z(2- 1-UZ(Y — 7.
between two normalized modes in the homogeneous planar D7) = [2(27) + Zei] 7 [2(277) = Zei] (31)
chirowaveguide are expressed as [17] and the input-impedance matrix at the = 2z, plane

h looking to the right is determined by the impedance-transform

/ (exmhyn + €ynhom) dz = bmn (23) technique as [16]
0
+ \—_7 . T H. T H.1-1

where é;; is the Kroneker's delta function. Z(z71) = Zoi[1 + HIDHG[1 - HGDHG S (32)

At the step discontinuityz = z;, the tangential field yere 7 ; and H; are the characteristic impedance and phase
components must be continuous. From (21) and (22), Weatrices of theth step discontinuity and they are all diagonal
obtain matrices with elements

> [l =S e e e = o
n=1 o n=1 o (Hi)rnn = 6rnn exp (_szznlz) (33b)
Z {Zy"((fjﬂ Jn(z:) = Z {%y"g))}jn(%) (25) wherek.;, and Z.;, are the wavenumber in thedirection
n=1 LY n=1 bt " and the characteristic impedance for thta mode in theith

The quantities with overbars indicate those on the righghirowaveguide section, respectively. _
hand side (RHS) of the discontinuity. Above four equations With the bisections in the-direction, there are two dif-
hold for anyz at z = z; within the enclosure. Multiplying ferent combinations of boundary conditions. For an incident
(24) and (25) by fym; €ym] aNd [rzm, cxm], respectively, guided mode from the input waveguide, we analyze the two

and making use of the orthogonality relation (23), we obtai§€pParate substructures with the respective boundary conditions.
In each case, the energy is totally reflected and the reflection-

U=MT, J=NJ (26) coefficient matrix are denoted ., andR; for the equivalent
here U and J are column vectors whose elements artransmission line open-circuit and short-circuit bisections, re-
w u v w gpectively. After determinin®,, andR; by using (29)—(32),

transmlsspn-_lln_e voltage_gnd current of thkh mOde’U"(zi). the scattering-coefficient matrices of the entire structure are
and J,,(z;); similar definitions hold for those vectors W'thdetermined by

an overbar. ThéM; and N; are matrices characterizing the
coupling of modes at the step discontinuity, and their elements R — Ro + Rs T — Ro — Rs (34)
are defined by scalar products or overlap integrals of mode 2 ’ 2

functions on the two sides of the discontinuity as follows: \yhere R is the reflection-coefficient matrix of the input

h B waveguide andI' is the transmission-coefficient matrix from
(Mi)rnn = / (Cyrnhacn +Eaznhyrn) dz the input to the OUtpUt Waveguide.
Oh If the incident wave is assumed to be thih surface-wave
(N = / (@ynPzm + Combyn) dz mode of the input waveguide with power 1.0, then the reflected
0 power P,.,,, of the mth mode in the input waveguide and the



644 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997

X go.4 g :
g g
=02 o,
— z £ 2
0
2t 0 5 10
@
100 ©100
Fig. 4. Configuration of a uniform planar chirowaveguide sandwiched be- 5 g
tween two identical nonchirowaveguides. F g Z 50
. .
. . . = =
transmitted powep;, of the kth mode in the output waveguide % s 0 % . "
can be determined, respectively, by © @
h
|an|2 Re / (eﬂfmh:m - eymh;m) du 9 o1 9 o
0 bt e
J— o kel
Prm = R (35) 5005 goos
Re / (Conhly — eynhy,) de : g
0 0 0
0 5 10 0 5 10
h
|Tin|? Re / (exrhys, — eyrhiy) dx O ®
P = 0 36 Fig. 5. When the incident mode of Fig. 4 is JEnode and the chirality
th = (36) parameter is taken to be a small valwe= 0.02, the percentage power of

Re

}
' (c h —e  hE ) dx (a) reflected Tk mode, (b) reflected TYI mode, (c) transmitted TEEmode,
niiyn yntzn (d) transmitted TN mode, (e) backward radiation, and (f) forward radiation
versus normalized length of chirowaveguidgX is shown.

IV. EXAMPLES AND DISCUSSION

o

A. Mode Conversion by Planar Chirowaveguide g 5 g
Sandwiched Between Two Non-Chirowaveguides = =
Q
. . oo o

To observe the mode-conversion properties due to electro- 0 > M/\:O

magnetic chirality, we examine a uniform planar chirowave-
guide sandwiched between two identical honchirowaveguides @
as depicted in Fig. 4. The chirowaveguide has the same
dielectric constant, permeability, and thickness as those of
the nonchirowaveguides, but the chirality is nonzero. If the
chirality vanishes, the whole structure is a uniform nonchi-
rowaveguide and no mode conversion, reflection, and radiation
phenomena will occur. If the chirality does not vanish, the
reflection and transmission wave will contain bothgTieode

and TM, mode even if the incident mode is a single oTE
mode or TMy mode, and radiation will also occur. In the
following, the effect of chirality and the normalized width
of the chirowaveguidel/\ is carefully discussed by fixing

€. = 10€g, 1+ = po, and¢ = 0.15X. Here, we discuss only 10
TEp mode incidence case. Since chiral media is reciprocal © )
and the structure is Symmetrlc’ the refleqtlon and transm|SS||951_ 6. When the incident mode of Fig. 4 is JEnode and the chirality
of TMy, mode when the incident mode is JEnode should parameter is taken to be a medium value= 0.1, the percentage power of

be the same as the reflection and transmission @f MBde (a) reflected T mode, (b) reflected T mode, (c) transmitted TEmode,
when the incident mode is T)Mmode (d) transmitted TN) mode, (e) backward radiation, and (f) forward radiation

. . - . ... versus normalized length of chirowaveguidgX is shown.
Fig. 5 illustrates the reflection, transmission, and radiation

properties of Tk incidence case. Here, a small value of

x = 0.02 is chosen. At first, from Fig. 5(e) and (f), we sedhis case, that the reflection powers are also very small. From
that the percentage of backward and forward radiation poweg. 5, we finally know that wherl/A changes, the incident
remains very small ag/\ changes, which indicates in thisTEo mode will partially transfer to output Thyimode and the
calculation, two modes (Tgand TM, for nonchirowaveguide, maximum transferred power is only 34% in this small chirality
and Ry and L, for chirowaveguide) are good enough to getase.

the solutions of Fig. 5(a)—(d) while in this calculation, we take Fig. 6 examines TEmode incidence for a moderate value
20 modes to get precise radiation power. We may also findafh » = 0.1. In this case, we still find that the radiation
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Fig. 7. When the incident mode of Fig. 4 is JEnode and the chirality 0 0
parameter is taken to be a large valwe= 0.4, the percentage power of 0 1 2 3 4 0 1 2 3 4
(a) reflected TE mode, (b) reflected TWM mode, (c) transmitted TEmode, (© (d)
(d) transmitted TN mode, (e) backward radiation, and (f) forward radiation o i
versus normalized length of chirowaveguidg\ is shown. Fig. 9. When the incident mode of Fig. 8(a) i&% mode, the percentage

power of (a) reflectedRy mode, (b) reflectedL, mode, (c) transmitted
Ry mode, (d) transmitted.; mode, (e) backward radiation, and (f) forward

and reflection are not very strong, but the mode conversiigiation versus normalized length 8f A is shown.
becomes faster, and the maximum converted power can be as
large as 91%. In Fig. 7, a large value ©f= 0.4, is chosen,
finding that the mode conversion becomes much faster, but
the maximum converted power can only be 67% because of
strong radiation and reflection. From these figures, we can

g

100

Refl. RO (%)
[4:]
[=}

Refl. LO (%)
o
[=]

draw the conclusion that if we want to use chirowaveguide as % 5 10 % 5 10
mode-conversion devices, the chirality should be chosen to be @ (b)
a moderate value as indicated in Fig. 6.
3100 3100
B. Guided Wave Propagation Through Double-Step § 3
Discontinuity and Air Gap g % g %
Now, guided wave propagation through double-step discon- . OL i 0

(=1
o
=]
o
o
3

tinuity depicted in Fig. 8(a) is discussed. If no step exists, the
structure is a uniform chirowaveguide and no mode conver- © (d)
sion, reflection, and radiation will occur. Also, as in the normal

incidence case discussed here, if the chirality vanishes, the
waveguides become nonchirowaveguides or ordinary dielectric
waveguides, and no mode conversion effect will occur. This
means that if the incident mode is JEhode (or TV, mode), 0 0
the reflection, transmission and radiation mode can only be

TE polarized (or TM polarized). Fig. 9 shows the reflection, © ®

transmission, and radiation properties & mode incidence Fig- 10. When the incident mode of Fig. 8(b) #& mode, the percentage
power of (a) reflected?o mode, (b) reflected.o mode, (c) transmittedzo

case. Here, we choose = 2.25¢, o= o, k= 0.1,t1 = mode, (d) transmitted’, mode, (€) backward radiation, and (f) forward
0.15A, andt; = 0.30A. From the figures, we see both theadiation versus normalized length @f A is shown.

effects of mode conversion and radiation.

Propagation properties of the air gap shown in Fig. 8(b N
are discussed in Figs. 10 and 11 i mode andZ, mode r)mde goes down as shown in Figs. 10(c) and 11(d). Here the

incidence, respectively. Here, we choose = 5co, j1 = transmission power of converted mode shown in Figs. 10(d)
o, % = 0.4, andt = 0.15)\. As we can expect, whenand 11(c) always keep a small value. There is a difference

the distance of the two waveguides increases, they becob@éween Figs. 10 and 11. In Fig. 10, since the incident mode
unrelated and, therefore, the transmission power of incideRg has an effective dielectric constatty = (k.r/ko)? =

00
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[=]
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Fig. 11. When the incident mode of Fig. 8(b) i3y mode, the percentage

power of (a) reflected?y mode, (b) reflected.o mode, (c) transmittedzg

radiation versus normalized length @f A is shown.
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Fig. 12. When the incidgnt mode of t_he periodic structure given in Fig. 3(a)
mode, (d) transmitted; mode, (€) backward radiation, and (f) forwardiS o mode, the normalized power (in dB) of (a) reflect&ld mode, (b)
reflectedLo mode, (c) transmitted?o mode, (d) transmitted.o mode, (e)
backward radiation, and (f) forward radiation versus normalized period of

d/ X\ is shown.

7.6518, which is much larger than the dielectric constant 1.0 of

the air, reflection of2; mode assumes main effect and goes up 0
quickly asd increases and then keeps a large value, although
there are small oscillations [see Fig. 10(a)]. While for Fig. 11,
since the incident modg, has an effective dielectric constant
eer, = (k.r/ko)®> = 1.2416, which is near the dielectric
constant 1.0 of the air, the forward radiation assumes main

effect and goes up asincreases [see Fig. 11(f)].

C. Guided Wave Propagation Through Periodic
Structure with Finite Length

Guided wave propagation properties, through a periodic
structure with finite length as given in Fig. 3(a), are now

considered. Here, we choosge = 2.25¢q, 4 = po, K =

0.01, t; = A\/3m, ta = A/2m, andd; = d/2. Figs. 12 and 13
show reflection, transmission, and radiation characteristics of
the finite-length periodic structure with 20 corrugations versus

normalized periodi/A.

The first Bragg reflection peak can be explained by sim-
ple physics. From the Bloch theorem, the propagation of -4
electromagnetic waves in a periodic chirowaveguide can be '
viewed as a uniform waveguide in the passband with the
Bloch wavenumber of the periodic structure as its propagati
constant. Since both th&; mode and thel., mode exist if

for Lo mode (denoted a%.;). Here, k.g and k.7, can be
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5|q 13. When the incident mode of the periodic structure given in Fig. 3(a)
IS Lo mode, the normalized power (in dB) of (a) reflect&d mode, (b)
reflected Ly mode, (c) transmitted?y mode, (d) transmitted., mode, (e)
chirality is nonzero, we may obtain two Bloch wavenumber$ackward radiation, and (f) forward radiation versus normalized period of

one is for Ry, mode (denoted as:.p) and the other is ¢/ is shown.

approximately obtained as the average of the two constitutisbould occur at.;, - 2d = 27, from which one may obtain
(d/N)r,—1, = 0.4477, which agrees well with Fig. 13(b). The
and k., = (k.p1 + k.r2)/2. The first Bragg reflection point first Bragg reflection point ofRy—L, and Lo—R, coupling
of Ry—Ry coupling should occur &t. g -2d = 2x, from which should occur ak.r, - d + k.r - d = 27, from which we may
we may obtain(d/A\)r,—r, = 0.4056, which agrees well with obtain(d/\)r,—r,, £.—r, = 0.4256, which agrees well with
Fig. 12(a). The first Bragg reflection point &f—Lo coupling Figs. 12(b) and 13(c).

waveguides in one periodic cell, i.é&,r = (kg1 + k.r2)/2,
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The radiation properties will now be explained. Since in[2]
the air region of Fig. 3(a)2, = k& — k2, with k., =
k. + 2nw/d, when k2 is positive, i.e.,k,, is real, thenth
space harmonic will radiate, from which one may obtain thg3]
backward radiation condition for the = —1 space harmonic
of Ro mode andLo are—ko < k.p—1 = k.p—2r/d<0and 4
—ko < k.1 = k. — 27/d < 0, respectively, which gives
0.4479 < (d/\)g < 0.8112 and 0.4724 < (d/\), < 0.8954. [l
From Figs. 12(e) and 13(e), one may see that this physically)
based prediction is correct.

[71
V. CONCLUSION

Equivalent networks have been introduced in both thgg)
cross section and longitudinal direction to analyze propaga-
tion properties of discontinuities in open planar chirowaveg-[9
uides. Symmetry properties of the structure have also been
discussed. Numerical results of mode conversion by planar
chirowaveguide sandwiched between two nonchirowavegui
have shown that when the chirality parameter is small, mode
conversion is weak and when the chirality parameter is mod-
erate, mode conversion is strong; however, when the chiral%}]
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