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Discontinuities in Planar Chirowaveguides
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Abstract—In this paper, we propose, develop, and implement
an exact method to analyze the effect of discontinuities in open
planar chirowaveguides. The method combines the building-
block approach of multimode network theory with a rigorous
mode-matching procedure. Both the scattering of discrete spectra
surface-wave modes and the continuous spectra radiation and
evanescent modes are discussed in this paper. The introduction
of equivalent transmission-line networks brings new physical
insight into the overall behavior of the discontinuities. Features
such as symmetrical properties of the structure are also investi-
gated. Based on the analysis, numerical results are displayed to
demonstrate the usefulness of this approach and to discuss mode
conversion and radiation characteristics of discontinuities.

Index Terms—Chiral material, chriowaveguide, discontinuity,
mode-matching method.

I. INTRODUCTION

DURING the past decade, attention has been focused
on electromagnetic chirality [1]–[3], and its potential

application to microwave, millimeter-wave, and optical-wave
guided structures. The concept of chirowaveguide was intro-
duced in [4], [5], and the characteristics of a uniform planar
chirowaveguide have been extensively investigated [6]–[10].
As a further step toward the design of versatile devices and
circuits, the analysis of various discontinuities in chirowave-
guides becomes significant. Mariotte and Engheta analyzed the
reflection and transmission of guided electromagnetic waves
at an air–chiral interface and at a chiral slab in a parallel-
plate waveguide. They provided a means to measure the
chirality admittance in closed waveguides [11]. Here, the open
waveguide case is considered and periodic structures with large
variations are examined. This provides an extension to the
small perturbation case examined earlier [12]–[14].

Since the planar chirowaveguide is an open structure, in
addition to the surface-wave modes, the nonsurface-wave
modes comprise a continuous spectrum. In this analysis,
the customary procedure of discretizing the continuous spec-
trum [15], [16] is followed by placing perfectly conduct-
ing walls far above and below the planar chirowaveguide,
thus replacing the open region with a chiral media par-
tially filled parallel-plate waveguide, which supports, in ad-
dition to the surface waves, an infinite number of higher
nonsurface-wave modes—some propagating, and the remain-
der, nonpropagating. This procedure is similar to the box
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normalization often used in quantum mechanics. The back-
ward (or forward) radiation power of the open disconti-
nuity structure can be obtained by the summation of the
powers of the reflected (or transmitted) higher propagat-
ing nonsurface-wave modes. Note that the presence of these
bounding planes does not affect the essential physics of the
scattering process.

In this paper, the scattering characteristics of the discon-
tinuities in open planar chirowaveguides are investigated by
a method which combines the building-block approach of
multimode network theory with a rigorous mode-matching
procedure. Introducing equivalent transmission lines both in
the transverse section and in the longitudinal direction not
only simplifies the mathematical manipulations but also brings
new physical insight into the overall behavior of the wave-
propagation phenomena. In the analysis of the eigenvalue
problem of the homogeneous planar chirowaveguide, a trans-
verse equivalent transmission-line network is introduced [10],
which indicates that the right circularly polarized (RCP) wave
and the left circularly polarized (LCP) wave can propagate
independently in the uniform regions and couple only at the
interface. Although the eigenvalue problem can be treated
by the vector transmission line network [6], the physical
picture of the network used here provides additional clarity.
In the longitudinal analysis, the electromagnetic-field prob-
lem is transferred into the building-block multimode network
problem, from which the discontinuity structure is viewed as
consisting of uniform waveguides, or building blocks, and
junctions. The fields are represented by the complete set of
waveguide modes corresponding to independent multimode
transmission lines for each uniform waveguide and are then
required to satisfy the boundary conditions at each junction.
Mode matching is then employed so that the coupling of the
transmission lines between the two sides of the junction can be
calculated. Finally, all parts of the problem are put together
to obtain the scattering properties of the entire structure. In
this analysis, the symmetrical properties of the discontinuity
structure, both in the cross section and in the longitudinal
direction, are discussed in detail so that the analysis can be
simplified.

After explaining the concept and developing a mathemat-
ical formulation, numerical results of reflection, transmis-
sion, and radiation effects are carefully investigated. The
coupling effect between the mode (i.e., the TE mode
for nonchirowaveguide) and the mode (i.e., the TM
mode for nonchirowaveguide) were especially considered. All
the results are explained using simple underlying physical
principles and may be applied to problems of practical circuit
design.
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Fig. 1. Configuration of a uniform planar chirowaveguide. Here, in order to
discretize the continuous spectrum, perfect conducting walls are introduced
far above and below the chiral slab.

II. EQUIVALENT TRANSMISSION-LINE REPRESENTATION

OF HOMOGENEOUSPLANAR CHIROWAVEGUIDE

A homogeneous planar chirowaveguide of the type shown
in Fig. 1 is considered. In order to analyze the discontinu-
ity problem in the following section, both the surface-wave
modes with discretized modal spectra and the radiation and
evanescent modes with continuous modal spectra are consid-
ered. For mathematical simplicity the continuous spectrum is
discretized. Here, perfectly conducting walls are introduced far
above and below the chiral slab, and the guided wave structure
becomes a planar waveguide partially filled with chiral media.

For chiral media, the constitutive relations for time-
harmonic fields ( ) may be written as [1]–[3]

(1a)

(1b)

where is the chirality admittance, is the permittivity, and
is the permeability.
Substituting the above constitutive relations into Maxwell’s

curl equations, we obtain

(2a)

(2b)

where , and is a dimensionless and nor-
malized quantity called the chirality parameter, defined as

.
In this analysis, we assume that the fields are invariant along

the -direction, i.e., . From (2), we get

(3)

(4)

(5)

(6)

where

(7a)

and

(7b)

To separate variables, let

(8f)

and substitute into (3)–(6). We find

(9)

and

(10)

(11)

(12)

where is the characteristic impedance which is normalized
as

(13)

in this model. Equation (9) is the equivalent transmission
line equation in the -direction. Here, and are
the voltage and current amplitudes of the eigenmode in the
planar chirowaveguide, and is the longitudinal propagation
constant of the eigenmode.

The matrix and its inverse matrix in (10) and (11)
can be transformed into a diagonal matrix by means of a
transformation matrix as follows:

(14a)

and

(14b)

where

(15)

(16)
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Fig. 2. Transmission-line network representation of Fig. 1.

If we let

(17a)

and

(17b)

the uncoupled radial transmission lines for the RCP wave
( ) and LCP wave ( ) can be obtained as

(18)

where

(19)

(20)

The equivalent transmission-line network in the cross sec-
tion is depicted in Fig. 2. In that figure, the RCP wave and
the LCP wave can propagate independently in the uniform
regions and couple only at the interface [10]. The introduction
of the transmission line brings a clear physical picture of wave
propagation in the planar chirowaveguides. Since the structure
under consideration is symmetrical to the plane, the
eigenmodes of planar chirowaveguide can be divided into two
types. The first type, which is defined as the even modes (i.e.,

modes and modes), corresponds to the open-circuit
in the transmission line at , while the second type
defined as the odd modes (i.e., modes and
modes) corresponds to the short-circuit in the transmission
line at . The nomenclature of modes and modes
was chosen because it can be shown that when chirality is
present, modes carry most of its energy in the RCP guided-
wave component and modes carry most of its energy in
the LCP guided-wave component [9]. Here, it should be noted

(a)

(b) (c)

Fig. 3. (a) Configuration of a chirowaveguide grating. (b) Bisection due to
symmetry. (c)ith basic unit of (b).

that the short-circuit (open-circuit) does not indicate that the
plane at is a physical electric wall (magnetic wall) or

and ( and ), but indicates
the equivalent transmission line is short-circuit (open-circuit)
or and ( and ). The purpose
of dividing the modes into the even type and odd type is that
if the discontinuity structure to be studied is symmetrical to
the plane, for the even-modes’ (odd-modes’) excitation
case only the even modes (odd modes) can be generated so
that only one type of modes is considered; thus simplifying
the analysis procedure. The eigenvalues and eigenfunctions of
a planar chiral waveguide can be obtained using the transverse
resonance method and transmission-line theory, which is not
discussed here because of space limitation.

III. SCATTERING CHARACTERISTICS OF

DISCONTINUITIES IN THE LONGITUDINAL DIRECTION

As an example of the discontinuities in planar chirowave-
guides, Fig. 3(a) shows a geometrical configuration of the chi-
rowaveguide grating under consideration. Because the struc-
ture is symmetrical in the longitudinal direction, the scattering
of the guided mode may be analyzed in terms of the sym-
metrical and antisymmetrical excitations for which we have
the equivalent transmission-line open-circuit and short-circuit
bisections in the longitudinal transmission lines, respectively,
as indicated in Fig. 3(b). It should also be noted that the short-
circuit (open-circuit) does not indicate that the plane at
is a physical electric wall (magnetic wall) or and

( and ), but indicates the equivalent
transmission line is short-circuit (open-circuit) or and

( and ). Here, we consider only
the even-mode excitation case so that the plane of
corresponds to equivalent transmission-line open-circuit.

The scattering properties of each bisection can be investi-
gated through the reflection characteristics of each basic unit.
Fig. 3(c) depicts theth basic unit which consists of theth step
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discontinuity between two uniform guides at a point
and a uniform guide of length between points and .
The analysis procedure for the reflection characteristics of the
basic unit is outlined below.

Since the terminal plane of the stepped structure at for
the longitudinal equivalent transmission lines is either open-
circuit or short-circuit in the equivalent transmission line,
the input impedance matrix at the plane
looking to the right can be determined by the impedance
transform technique. Therefore, can be considered as
a known matrix. General field solution in each constituent
uniform region may be expressed in terms of the superposition
of a complete set of mode functions. For tangential field
components in the region, we have

(21)

(22)

A similar set of tangential field components may also be
written for the region, but it is not cited here for
simplicity. It can be demonstrated that the orthogonal relation
between two normalized modes in the homogeneous planar
chirowaveguide are expressed as [17]

(23)

where is the Kroneker’s delta function.
At the step discontinuity , the tangential field

components must be continuous. From (21) and (22), we
obtain

(24)

(25)

The quantities with overbars indicate those on the right-
hand side (RHS) of the discontinuity. Above four equations
hold for any at within the enclosure. Multiplying
(24) and (25) by [ ] and [ ], respectively,
and making use of the orthogonality relation (23), we obtain

(26)

where and are column vectors whose elements are
transmission-line voltage and current of theth mode,
and ; similar definitions hold for those vectors with
an overbar. The and are matrices characterizing the
coupling of modes at the step discontinuity, and their elements
are defined by scalar products or overlap integrals of mode
functions on the two sides of the discontinuity as follows:

for . On the other hand, multiplying
(24) and (25) by [ ] and [ ], respectively,
and making use of the orthogonality relation (23) of the
chirowaveguide on the RHS of the discontinuity, we find

(27)

One can show that the following matrix identities hold for the
present case:

(28)

where is the unit matrix and denotes the transpose.
From (26) and (27), it can be derived that the input

impedance matrix at the plane looking to the
right satisfies

(29)

where

(30)

The reflection-coefficient matrix at the plane
looking to the right is obtained as

(31)

and the input-impedance matrix at the plane
looking to the right is determined by the impedance-transform
technique as [16]

(32)

Here, and are the characteristic impedance and phase
matrices of theth step discontinuity and they are all diagonal
matrices with elements

(33a)

(33b)

where and are the wavenumber in the-direction
and the characteristic impedance for theth mode in the th
chirowaveguide section, respectively.

With the bisections in the -direction, there are two dif-
ferent combinations of boundary conditions. For an incident
guided mode from the input waveguide, we analyze the two
separate substructures with the respective boundary conditions.
In each case, the energy is totally reflected and the reflection-
coefficient matrix are denoted by and for the equivalent
transmission line open-circuit and short-circuit bisections, re-
spectively. After determining and by using (29)–(32),
the scattering-coefficient matrices of the entire structure are
determined by

(34)

where is the reflection-coefficient matrix of the input
waveguide and is the transmission-coefficient matrix from
the input to the output waveguide.

If the incident wave is assumed to be theth surface-wave
mode of the input waveguide with power 1.0, then the reflected
power of the th mode in the input waveguide and the
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Fig. 4. Configuration of a uniform planar chirowaveguide sandwiched be-
tween two identical nonchirowaveguides.

transmitted power of the th mode in the output waveguide
can be determined, respectively, by

(35)

(36)

IV. EXAMPLES AND DISCUSSION

A. Mode Conversion by Planar Chirowaveguide
Sandwiched Between Two Non-Chirowaveguides

To observe the mode-conversion properties due to electro-
magnetic chirality, we examine a uniform planar chirowave-
guide sandwiched between two identical nonchirowaveguides
as depicted in Fig. 4. The chirowaveguide has the same
dielectric constant, permeability, and thickness as those of
the nonchirowaveguides, but the chirality is nonzero. If the
chirality vanishes, the whole structure is a uniform nonchi-
rowaveguide and no mode conversion, reflection, and radiation
phenomena will occur. If the chirality does not vanish, the
reflection and transmission wave will contain both TEmode
and TM mode even if the incident mode is a single TE
mode or TM mode, and radiation will also occur. In the
following, the effect of chirality and the normalized width
of the chirowaveguide is carefully discussed by fixing

, and . Here, we discuss only
TE mode incidence case. Since chiral media is reciprocal
and the structure is symmetric, the reflection and transmission
of TM mode when the incident mode is TEmode should
be the same as the reflection and transmission of TEmode
when the incident mode is TMmode.

Fig. 5 illustrates the reflection, transmission, and radiation
properties of TE incidence case. Here, a small value of

is chosen. At first, from Fig. 5(e) and (f), we see
that the percentage of backward and forward radiation power
remains very small as changes, which indicates in this
calculation, two modes (TEand TM for nonchirowaveguide,
and and for chirowaveguide) are good enough to get
the solutions of Fig. 5(a)–(d) while in this calculation, we take
20 modes to get precise radiation power. We may also find in

(a) (b)

(c) (d)

(e) (f)

Fig. 5. When the incident mode of Fig. 4 is TE0 mode and the chirality
parameter is taken to be a small value� = 0:02, the percentage power of
(a) reflected TE0 mode, (b) reflected TM0 mode, (c) transmitted TE0 mode,
(d) transmitted TM0 mode, (e) backward radiation, and (f) forward radiation
versus normalized length of chirowaveguided=� is shown.

(a) (b)

(c) (d)

(e) (f)

Fig. 6. When the incident mode of Fig. 4 is TE0 mode and the chirality
parameter is taken to be a medium value� = 0:1, the percentage power of
(a) reflected TE0 mode, (b) reflected TM0 mode, (c) transmitted TE0 mode,
(d) transmitted TM0 mode, (e) backward radiation, and (f) forward radiation
versus normalized length of chirowaveguided=� is shown.

this case, that the reflection powers are also very small. From
Fig. 5, we finally know that when changes, the incident
TE mode will partially transfer to output TMmode and the
maximum transferred power is only 34% in this small chirality
case.

Fig. 6 examines TEmode incidence for a moderate value
of . In this case, we still find that the radiation
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. When the incident mode of Fig. 4 is TE0 mode and the chirality
parameter is taken to be a large value� = 0:4, the percentage power of
(a) reflected TE0 mode, (b) reflected TM0 mode, (c) transmitted TE0 mode,
(d) transmitted TM0 mode, (e) backward radiation, and (f) forward radiation
versus normalized length of chirowaveguided=� is shown.

and reflection are not very strong, but the mode conversion
becomes faster, and the maximum converted power can be as
large as 91%. In Fig. 7, a large value of , is chosen,
finding that the mode conversion becomes much faster, but
the maximum converted power can only be 67% because of
strong radiation and reflection. From these figures, we can
draw the conclusion that if we want to use chirowaveguide as
mode-conversion devices, the chirality should be chosen to be
a moderate value as indicated in Fig. 6.

B. Guided Wave Propagation Through Double-Step
Discontinuity and Air Gap

Now, guided wave propagation through double-step discon-
tinuity depicted in Fig. 8(a) is discussed. If no step exists, the
structure is a uniform chirowaveguide and no mode conver-
sion, reflection, and radiation will occur. Also, as in the normal
incidence case discussed here, if the chirality vanishes, the
waveguides become nonchirowaveguides or ordinary dielectric
waveguides, and no mode conversion effect will occur. This
means that if the incident mode is TEmode (or TM mode),
the reflection, transmission and radiation mode can only be
TE polarized (or TM polarized). Fig. 9 shows the reflection,
transmission, and radiation properties of mode incidence
case. Here, we choose

, and . From the figures, we see both the
effects of mode conversion and radiation.

Propagation properties of the air gap shown in Fig. 8(b)
are discussed in Figs. 10 and 11 for mode and mode
incidence, respectively. Here, we choose

, and . As we can expect, when
the distance of the two waveguides increases, they become
unrelated and, therefore, the transmission power of incident

(a) (b)

Fig. 8. Configuration of (a) planar chirowaveguide double-step discontinuity
and (b) two planar chirowaveguides separated by an air gap.

(a) (b)

(c) (d)

Fig. 9. When the incident mode of Fig. 8(a) isR0 mode, the percentage
power of (a) reflectedR0 mode, (b) reflectedL0 mode, (c) transmitted
R0 mode, (d) transmittedL0 mode, (e) backward radiation, and (f) forward
radiation versus normalized length ofd=� is shown.

(a) (b)

(c) (d)

(e) (f)

Fig. 10. When the incident mode of Fig. 8(b) isR0 mode, the percentage
power of (a) reflectedR0 mode, (b) reflectedL0 mode, (c) transmittedR0

mode, (d) transmittedL0 mode, (e) backward radiation, and (f) forward
radiation versus normalized length ofd=� is shown.

mode goes down as shown in Figs. 10(c) and 11(d). Here the
transmission power of converted mode shown in Figs. 10(d)
and 11(c) always keep a small value. There is a difference
between Figs. 10 and 11. In Fig. 10, since the incident mode

has an effective dielectric constant
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. When the incident mode of Fig. 8(b) isL0 mode, the percentage
power of (a) reflectedR0 mode, (b) reflectedL0 mode, (c) transmittedR0

mode, (d) transmittedL0 mode, (e) backward radiation, and (f) forward
radiation versus normalized length ofd=� is shown.

, which is much larger than the dielectric constant 1.0 of
the air, reflection of mode assumes main effect and goes up
quickly as increases and then keeps a large value, although
there are small oscillations [see Fig. 10(a)]. While for Fig. 11,
since the incident mode has an effective dielectric constant

, which is near the dielectric
constant 1.0 of the air, the forward radiation assumes main
effect and goes up as increases [see Fig. 11(f)].

C. Guided Wave Propagation Through Periodic
Structure with Finite Length

Guided wave propagation properties, through a periodic
structure with finite length as given in Fig. 3(a), are now
considered. Here, we choose

, and . Figs. 12 and 13
show reflection, transmission, and radiation characteristics of
the finite-length periodic structure with 20 corrugations versus
normalized period .

The first Bragg reflection peak can be explained by sim-
ple physics. From the Bloch theorem, the propagation of
electromagnetic waves in a periodic chirowaveguide can be
viewed as a uniform waveguide in the passband with the
Bloch wavenumber of the periodic structure as its propagation
constant. Since both the mode and the mode exist if
chirality is nonzero, we may obtain two Bloch wavenumbers;
one is for mode (denoted as ) and the other is
for mode (denoted as ). Here, and can be
approximately obtained as the average of the two constitutive
waveguides in one periodic cell, i.e., ,
and . The first Bragg reflection point
of – coupling should occur at , from which
we may obtain – , which agrees well with
Fig. 12(a). The first Bragg reflection point of – coupling

(a) (b)

(c) (d)

(e) (f)

Fig. 12. When the incident mode of the periodic structure given in Fig. 3(a)
is R0 mode, the normalized power (in dB) of (a) reflectedR0 mode, (b)
reflectedL0 mode, (c) transmittedR0 mode, (d) transmittedL0 mode, (e)
backward radiation, and (f) forward radiation versus normalized period of
d=� is shown.

(a) (b)

(c) (d)

(e) (f)

Fig. 13. When the incident mode of the periodic structure given in Fig. 3(a)
is L0 mode, the normalized power (in dB) of (a) reflectedR0 mode, (b)
reflectedL0 mode, (c) transmittedR0 mode, (d) transmittedL0 mode, (e)
backward radiation, and (f) forward radiation versus normalized period of
d=� is shown.

should occur at , from which one may obtain
– , which agrees well with Fig. 13(b). The

first Bragg reflection point of – and – coupling
should occur at , from which we may
obtain – – , which agrees well with
Figs. 12(b) and 13(c).
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The radiation properties will now be explained. Since in
the air region of Fig. 3(a) with

, when is positive, i.e., is real, the th
space harmonic will radiate, from which one may obtain the
backward radiation condition for the space harmonic
of mode and are and

, respectively, which gives
and .

From Figs. 12(e) and 13(e), one may see that this physically
based prediction is correct.

V. CONCLUSION

Equivalent networks have been introduced in both the
cross section and longitudinal direction to analyze propaga-
tion properties of discontinuities in open planar chirowaveg-
uides. Symmetry properties of the structure have also been
discussed. Numerical results of mode conversion by planar
chirowaveguide sandwiched between two nonchirowaveguides
have shown that when the chirality parameter is small, mode
conversion is weak and when the chirality parameter is mod-
erate, mode conversion is strong; however, when the chirality
parameter is large, mode conversion becomes weak again due
to strong radiation and reflection. Therefore, if one wants to
use chirowaveguide as a mode-conversion device, the chirality
parameter should be chosen to be of moderate value.

Guided wave propagation has also been examined through
double-step discontinuity and air gap. Both the mode conver-
sion effect and radiation effect occur. Especially for the air
gap, one finds a difference between-mode incidence and

-mode incidence. When the distance of the air gap increases,
the reflection of mode dominates if the incident mode is

mode, while the forward radiation dominates if the incident
mode is mode.

Finally, propagation properties of periodic structure with
finite-length are studied and the first Bragg reflection peaks
of – , – , – , and – coupling are found.
The positions of these peaks are confirmed by simple physical
reasoning and support the numerical results. In addition, the
limits of the radiation are evaluated and agree well with
calculations.
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